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Abstract. The influence of the mutual interaction between the two outgoing nucleons (NN-FSI) in electro-
and photoinduced two-nucleon knockout from 16O has been investigated perturbatively. It turns out that
the effect of NN-FSI depends on the kinematics and on the type of reaction considered. The effect is
generally larger in pp- than in pn-knockout and in electroinduced than in photoinduced reactions. In
superparallel kinematics NN-FSI leads in the (e, e′pp) channel to a strong increase of the cross-section, that
is mainly due to a strong enhancement of the ∆-current contribution. In pn-emission, however, this effect
is partially cancelled by a destructive interference with the seagull current. For photoreactions NN-FSI is
considerably reduced in superparallel kinematics and can be practically negligible in specific kinematics.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.60.-n Nuclear
structure models and methods – 25.30.Fj Inelastic electron scattering to continuum

1 Introduction

The independent particle shell model (IPM), which de-
scribes a nucleus as a system of nucleons moving in a mean
field, is able to reproduce the basic features of nuclear
structure if effective NN-interactions are employed, but
using realistic interactions it fails to describe the binding
energy of nuclei. This failure is a consequence of the strong
short-range components of the interaction, which are nec-
essary to reproduce NN data and which induce into the
nuclear wave function correlations beyond the mean-field
description. Thus, a careful evaluation of the short-range
correlations (SRC) is needed to describe nuclear proper-
ties in terms of a realistic NN-interaction and provide pro-
found insight into the structure of the hadronic interaction
in the nuclear medium [1].

A powerful tool for the investigation of SRC is the elec-
tromagnetically induced two-nucleon knockout since the
probability that a real or a virtual photon is absorbed by
a pair of nucleons should be a direct measure for the corre-
lations between these nucleons [2,3]. This simple picture,
however, has to be modified because additional complica-
tions have to be taken into account, such as competing
mechanisms, like contributions of two-body currents as
well as the final-state interaction (FSI) between the two
outgoing nucleons and the residual nucleus.

a e-mail: schwamb@kph.uni-mainz.de

As a logical consequence of the complexity of the
problem, a combined study of all four possible reac-
tions (e, e′pp), (e, e′pn), (γ, pp), and (γ, pn) must be
performed. The advantage of pp-emission is the fact
that the electromagnetic “background”, represented by
two-body currents, consists only of the ∆-excitation
and de-excitation mechanisms, whereas the nonrelativis-
tic seagull and pion-in-flight meson-exchange currents
(MEC) are forbidden due to isospin selection rules. On
the other hand, pn-emission, where MEC show rather
larger contributions [4,5], allows one to study in addition
the tensor correlations (TC), due to the strong tensor
components of the pion-exchange contribution of the
NN-interaction. Concerning the electromagnetic probe,
in electron scattering a large sensitivity to correlations
in the longitudinal response has been found [6], whereas
in photoabsorption the only existing transverse part
is dominated, in most of the kinematics studied till
now, by medium-range two-body currents [4]. Therefore,
electroinduced reactions seem preferable to explore
NN-correlations, while photoreactions, besides giving
complementary information on correlations, are better
suited to investigate two-body currents, whose good
understanding is essential to disentangle and investigate
short-range effects. Therefore, both types of reactions are
interesting and worthwhile to be considered.
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A suitable target for this study is the magic spin-0 nu-
cleus 16O, due to the presence of discrete final states in
the excitation energy spectrum of the residual nuclei, 14C
and 14N in pp- and pn-knockout, respectively, which are
well separated in energy and can therefore be separated
in experiments with good energy resolution. The spin and
isospin quantum numbers of the residual nuclei determine
the quantum numbers of the emitted pair inside the tar-
get. Since different pair wave functions can be differently
affected by SRC and two-body currents, the experimen-
tal separation of specific final states can act as a filter
to disentangle and separately investigate the two reaction
processes [6]. This is a peculiar feature of 16O compared,
for example, to a few-nucleon target like 3He, where the
residual “nucleus” consists only of a nucleon without any
excitation spectrum.

The existing microscopic model calculations (see,
e.g., [3–12] and references therein) are able to give a rea-
sonable and in some cases even fair description of the
available data [13–17]. The results obtained till now have
confirmed the validity of the direct knockout mechanism
for low values of the excitation energy of the residual nu-
cleus and have given clear evidence of SRC in the reaction
16O(e, e′pp) for the transition to the 0+ ground state of
14C [17]. Due to the complexity of the subject, this re-
sult is a great success of the experimental and theoretical
efforts. However, some discrepancies have been found be-
tween theory and data. They may be due to the approx-
imations adopted in the models necessary to reduce the
complexity of the calculations. In order to obtain more
insight into the two-nucleon knockout process, the models
should be improved in the near future as much as possible.
This is of specific importance for the interpretation of the
existing as well as of future data which are expected from
already approved proposals at MAMI in Mainz [18,19].

A crucial assumption adopted in the past was the com-
plete neglect of the mutual interaction between the two
outgoing nucleons (NN-FSI). Only the major contribution
of FSI, due to the interaction of each of the two outgoing
nucleons with the residual nucleus, was taken into account
in the different models. The guess was that the effect of
NN-FSI should not be large, at least in the kinematics
usually considered in the experiments, where the two nu-
cleons are ejected back to back and thus, for instance,
in superparallel kinematics, where the two nucleons are
parallel and antiparallel to the momentum transfer. The
superparallel kinematics is of particular interest for the-
oretical [20] and experimental [16,18,19] investigations,
because a Rosenbluth L/T-separation becomes possible in
this kinematics in order to extract the longitudinal struc-
ture function that is assumed to be most sensitive to SRC.
A first calculation on nuclear matter [21] clearly indicates
that NN-FSI can be important also in superparallel kine-
matics. This result has been confirmed by our recent cal-
culation for the exclusive 16O(e, e′pp) reaction [22]. Intu-
itively, this result is not very surprising because, in con-
trast to the N-nucleus case, the NN cross-section does not
become small at backward scattering angles.

A consistent treatment of FSI would require a three-
body approach for the interaction of the two nucleons and
the residual nucleus, which represents a challenging task.
A first estimate of the role of NN-FSI within an approx-
imated but more feasible approach has been done in [22],
where, however, only a few results for the 16O(e, e′pp) re-
action are presented. The present paper is a continuation
of this work [22] within the same approach. More details
of the theoretical treatment are given and more numerical
results are discussed. Our investigation is extended to the
other channels besides (e, e′pp), i.e., (e, e′pn), (γ, pp), and
(γ, pn). The different effects of NN-FSI on the various elec-
tromagnetic reaction mechanisms are worked out in detail.
Work is in progress to tackle the full three-body approach.

The paper is organized as follows. In sect. 2, the main
features of our model for two-nucleon knockout [5,6] are
shortly reviewed and the different approaches to FSI are
discussed. In sect. 3, a detailed description of the numer-
ical treatment of NN-FSI is given. The numerical results
for different reactions in selected kinematical situations
are presented in sect. 4. Some conclusions and perspectives
of possible improvements and developments are given in
sect. 5.

2 The model

The central quantity for the calculation of the cross-
section of the reaction induced by a real or virtual photon,
with momentum �q, where two nucleons are emitted from
a nucleus, is given by the matrix elements of the nuclear
charge-current operator between initial and final nuclear
many-body states, i.e.,

Jµ(�q ) =
∫

〈Ψf |Ĵµ(�r)|Ψi〉ei�q·�rd�r . (1)

Bilinear products of these integrals give the components
of the hadron tensor, whose suitable combinations give all
the observables available from the reaction process [3].

The model is based on the two assumptions of an exclu-
sive reaction for the transition to a specific discrete state
of the residual nucleus and of the direct knockout mecha-
nism [6,7,20]. Thus, we consider a direct one-step process
where the electromagnetic probe directly interacts with
the pair of nucleons that are emitted and the A − 2 ≡ B
nucleons of the residual nucleus behave as spectators. Re-
cent experiments [14–17,23–26] on reactions induced by
real and virtual photons have confirmed the validity of
this mechanism for low values of the excitation energy of
the residual nucleus.

As a result of these two assumptions, the integrals (1)
can be reduced to a form with three main ingredients: the
two-nucleon overlap function (TOF) between the ground
state of the target and the final state of the residual nu-
cleus; the nuclear current ĵµ of the two emitted nucleons,
and the two-nucleon scattering wave function |ψf 〉.

The nuclear current operator ĵµ(r) is the sum of a
one- and a two-body part (see fig. 1). The one-body part
consists of the usual charge operator and the convection
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Fig. 1. The electromagnetic current contributions taken into account in the present approach.

and spin currents. In the present version of our model, the
two-body part consists of the nonrelativistic pionic seag-
ull MEC, the pion-in-flight MEC and the ∆-contribution,
whose explicit expressions can be found, for example,
in [4,27]. Note that the seagull and the pion-in-flight MEC
do not contribute in pp-emission, at least in the adopted
nonrelativistic limit.

The TOF requires a calculation of the two-hole spec-
tral function including consistently different types of cor-
relations, i.e. SRC and TC, as well as long-range correla-
tions (LRC), mainly representing collective excitations of
nucleons at the nuclear surface.

So far, different approaches are available in the most
refined version of our model for pp- and pn-knockout [5,6].
In both cases the TOF for transitions to discrete low-
lying states of the residual nucleus is given by a combina-
tion of different components of the relative and center-
of-mass (CM) motion. SRC and TC are introduced in
the radial wave function of the relative motion by means
of state-dependent defect functions which are added to
the uncorrelated partial wave. For the pp-case [6,28],
the defect functions are obtained by solving the Bethe-
Goldstone equation using, for a comparison, different
NN-interactions: Bonn OBEPQ-A, Bonn OBEPQ-C [29],
and Reid Soft Core [30]. The calculations with the Bonn
OBEPQ-A and Bonn OBEPQ-C potentials do not show
significant differences, while those with the Reid Soft Core
potential produce lower cross-sections which are in worse
agreement with the available (e, e′pp) data [6,15–17]. For
the pn-case [5], SRC and TC are calculated within the
framework of the coupled-cluster method [1] with the
AV14-potential [31] and using the so-called S2 approxi-
mation, where only 1-particle 1-hole and 2-particle 2-hole
excitations are included in the correlation operator. This
method is an extension of the Bethe-Goldstone equation

and takes into account, among other things and besides
particle-particle ladders, also hole-hole ladders. These,
however, turn out to be rather small in 16O [1], so that the
two approaches are similar in the treatment of SRC. The
advantage of the coupled-cluster method is that it pro-
vides directly correlated two-body wave functions [1,5].
TC give an important contribution to pn-knockout, while
their role is very small in pp-knockout.

LRC are included in the expansion coefficients of the
TOF. For the pp-case, these coefficients are calculated in
an extended shell-model basis within a dressed random
phase approximation [6,28]. For the pn-case, a simple con-
figuration mixing calculation of the two-hole states in 16O
has been done and only 1p-hole states are considered for
transitions to the low-lying states of 14N [5].

In the scattering state, the two outgoing nucleons 1 and
2 and the residual nucleus B interact via the potential

Vf = V OP(1) + V OP(2) + V NN(1, 2), (2)

where V OP(i) denotes the interaction between the nu-
cleon i and the residual nucleus. In our approach we use
a complex phenomenological optical potential fitted to
nucleon-nucleus scattering data, which contains a central,
a Coulomb and a spin-orbit term [32]. In order to ensure
some consistency in the treatment of the NN-interaction
in the initial and final states, we have used the same
NN-potential V NN as in the calculation of the TOF, i.e.,
the OBEPQ-A potential for pp- and the AV14-potential
for pn-emission. The sensitivity of NN-FSI effects to the
choice of the potential is however small in the calculations.

In general, a consistent treatment of the final state
would require a three-body approach, that, due to the
complexity of the problem, has never been realized till now
for complex nuclei. Different approximations have been
used in the past.
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In the simplest picture, any interaction between the
two nucleons and the residual nucleus is neglected, i.e.
Vf ≡ 0, and a plane-wave (PW) approximation is assumed
for the outgoing nucleon wave functions. If �p 0

i , i ∈ {1, 2},
denotes the asymptotic momentum of the outgoing nu-
cleon i in the chosen reference frame, the corresponding
state is therefore given by

|ψf 〉PW = |�p 0
1 〉 |�p 0

2 〉 , (3)

where |�p 0
i 〉 describes the plane-wave state of the nucleon

i with momentum �p 0
i .

In a more sophisticated approach, only the opti-
cal potential V OP(i) is considered while the mutual
NN-interaction V NN(1, 2) is neglected. In this so-called
“distorted wave” (DW) approximation, which has com-
monly been used in our previous work, the final state is
in general given by

|ψf 〉DW =
(
1 +G0(z)TOP(z)

) |�p 0
1 〉 |�p 0

2 〉 , (4)

with

z =
(�p 0

1 )2

2m1
+

(�p 0
2 )2

2m2
+

(�pB)2

2mB
− iε . (5)

In (4) mi denotes the mass of the nucleon i and �pB is the
asymptotic momentum of the residual nucleus, with mass
mB , that in the laboratory frame is given by

�q = �p 0
1 + �p 0

2 + �pB . (6)

The quantity

G0(z) =
1

z −H0(1) −H0(2) −H0(A− 2)
(7)

in (4) denotes the free three-body propagator, where the
kinetic Hamiltonian H0 is treated nonrelativistically ex-
cluding rest masses. The scattering amplitude TOP in (4)
is in general given by the Lippmann-Schwinger equation,
i.e.,

TOP(z) =
(
V OP(1) + V OP(2)

)
+

(
V OP(1) + V OP(2)

)
G0(z)TOP(z) . (8)

The residual nucleus has a rather large mass in com-
parison with the nucleon and can thus be considered as
infinitely heavy. This is a good approximation, which con-
siderably simplifies the calculation of the scattering state,
that can thus be expressed in this limit as the product
of two uncoupled single-particle distorted wave functions,
i.e.,

|ψf 〉DW = |φOP(�p 0
1 )〉 |φOP(�p 0

2 )〉, (9)

where |φOP(�p 0
i )〉, is given by

|φOP(�p 0
i )〉 =

(
1 + gi

0(zi)tOP,i(zi)
) |�p 0

i 〉, (10)

and

zi =
(�p 0

i )2

2mi
− iε , (11)

gi
0(zi) =

1
zi −H0(i)

, (12)

tOP,i(zi) = V OP(i) + V OP(i)gi
0(zi)tOP,i(zi) (13)

are the single-particle counterparts to (5), (7), (8), respec-
tively. Equation (10) is equivalent to the single-particle
Schrödinger equation

(
H0(i) + V OP(i)

) |φOP(�p 0
i )〉 =

(�p 0
i )2

2mi
|φOP(�p 0

i )〉 , (14)

which is solved in our treatment numerically in configura-
tion space.

In all previous works, but in our recent paper [22],
the interaction V NN between the two outgoing nucleons
(NN-FSI) has been completely neglected. If we want to
incorporate it in a fully consistent frame, an infinite series
of contributions has to be taken into account in TOP and
in the NN-scattering amplitude

tNN(z12) = V NN + V NNg12
0 (z12)tNN(z12), (15)

where z12 = z1 + z2, and

g12
0 (z12) =

1
z12 −H0(1) −H0(2)

. (16)

Adopting again the approximation mB → ∞, the leading-
order terms in the scattering amplitudes are given by (see
fig. 2)

|ψf 〉 =
(
1 + g12

0 (z12)tOP,12(z12) + g12
0 (z12)tNN(z12)

+g12
0 (z12)tOP,12(z12)g12

0 (z12)tNN(z12)

+g12
0 (z12)tNN(z12)g12

0 (z12)tOP,12(z12)+. . .
)
|�p 0

1 〉 |�p 0
2 〉 ,
(17)

where tOP,12(z12) follows from (8) with the substitution

G0(z) → g12
0 (z12) . (18)

A consistent treatment of FSI would require a three-
body approach, with the usual computational challenges,
for the two outgoing nucleons and the residual A− 2 nu-
cleus. In this ambitious project, which we are presently in-
vestigating, we intend to solve the corresponding Faddeev-
like equations whose leading-order terms are just given by
(17). Doing this, we adopt, for the sake of simplicity, two
approximations: a) the residual nucleus is infinitely heavy
(see discussion above), b) any internal excitation of the
three involved particles is neglected. In consequence, no in-
termediate ∆-excitation of the nucleons in the final state is
considered and a possible intermediate change of the A−2
residual nucleus with respect to his excitation energy by
the nucleon-nucleus interaction V OP is neglected. These
Faddeev-like equations will allow us to study consistently
the scattering of the outgoing nucleons dressed by the opti-
cal potential in the nuclear medium for complex, but finite
nuclei. An interesting topic for future work could be a com-
parison of the qualitative features of this approach with
recent calculations of Dickhoff and collaborators [33,34],
where the dressing of nucleons as embodied in single-
particle spectral functions is incorporated in the descrip-
tion of nucleon-nucleon scattering in nuclear matter.
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Fig. 2. The relevant diagrams for electromagnetic two-nucleon knockout on a complex nucleus A. The two diagrams on top depict
the plane-wave (PW) approximation and the distortion of the two outgoing proton wave functions by final-state interactions
(FSI). Below, the relevant mechanisms of FSI are depicted in detail, where the open circle denotes either the nucleon-nucleus
scattering amplitude (OP), see (13), or the nucleon-nucleon scattering amplitude (NN), see (15). Diagrams which are given by
an interchange of nucleons 1 and 2 are not depicted. In the present approach, only diagrams (a) and (b) are taken into account.

At the moment, following the same approach as in [22],
we restrict ourselves to a perturbative treatment, by tak-
ing into account only the first three terms in (17), i.e.
the plane-wave contribution and diagrams (a) and (b) in
fig. 2. Formally, this corresponds to a perturbative treat-
ment of tOP,12 and tNN up to first order and where mul-
tiscattering processes, like the fourth and fifth terms in
(17) (diagrams (c) and (d) in fig. 2), are neglected. Such
an approximated but much more feasible treatment should
allow us to study at least the main features of NN-FSI. In
particular, it should allow us to answer the open question
whether the neglect of NN-FSI in previous calculations can
in general be justified or not. The present treatment of in-
corporating NN-FSI is denoted as DW-NN. We denote as
PW-NN the treatment where only V NN is considered and
V OP is switched off.

We would like to add that in practice the finite mass
mB of the residual nucleus is taken into account in the
PW- and DW-calculations by performing in (14) the
transformation [20] (i �= j)

�p 0
i → �q 0

i =
1

m16O

[
(mj +mB)�p 0

i −mi(�p 0
j + �pB)

]
, (19)

where m16O denotes the mass of the 16O-target. Moreover,
a semirelativistic generalization of (14) has been used as
discussed in [32].

In conclusion, the corresponding final states in the dif-
ferent approximations are given by

|ψf 〉PW = |�q 0
1 〉 |�q 0

2 〉 , (20)

|ψf 〉DW = |φOP(�q 0
1 )〉 |φOP(�q 0

2 )〉 , (21)

|ψf 〉PW-NN = |�q 0
1 〉 |�q 0

2 〉+g12
0 (z12)tNN(z12)|�p 0

1 〉 |�p 0
2 〉, (22)

|ψf 〉DW-NN = |φOP(�q 0
1 )〉 |φOP(�q 0

2 )〉
+g12

0 (z12)tNN(z12)|�p 0
1 〉 |�p 0

2 〉 . (23)

3 Numerical treatment of NN-FSI

In general, we intend to be as flexible as possible in the
treatment of NN-FSI. Consequently, we use the momen-

tum and not the configuration space for the evaluation
of the scattering amplitude tNN(z12) in (15), so that also
nonlocal potentials, like the Bonn OBEPQ-A potential,
which is used in [5,28] to calculate the defect functions
of the pp-case, can be considered. Moreover, in momen-
tum space it is much easier to incorporate in the NN-FSI
also the ∆-isobar consistently within a coupled-channel
approach [35]. Due to the rather large energies of the real
or virtual photon in the kinematics discussed below, it
cannot be excluded from the beginning that this contri-
bution can be neglected in the NN-FSI. In forthcoming
studies we intend to investigate this question in some de-
tail. In the present paper, however, we restrict ourselves
to the genuine NN-potential AV14 for pn- and the Bonn
OBEPQ-A potential for pp-emission.

Since both the electromagnetic current and the TOF
are calculated in the model in the configuration space,
we have to adopt a suitable Fourier transformation of the
relative coordinates [20] �r1B = �r1 −�rB and �r2B = �r2 −�rB

of the three-body system. Taking into account the CM
correction (19), we have therefore to evaluate

〈ψf |�r1B , �r2B〉 ≡ 〈ψf (�p 0
1 , �p 0

2 )|�r1B , �r2B〉 =

〈φOP(�q 0
1 )|�r1B〉 〈φOP(�q 0

2 )|�r2B〉 +
∫

d3p1d3p2

· 〈�p 0
1 , �p 0

2 | tNN(z∗12) g
12
0 (z∗12)|�p1, �p2 〉〈�p1|�r1B〉 〈�p2|�r2B〉 .

(24)

Note that the final state is completely determined by
the asymptotic momenta �p 0

1 and �p 0
2 of the two nucle-

ons, while the recoil momentum of the residual nucleus
�pB is given by eq. (6). Additional spin and isospin quan-
tum numbers are suppressed at the moment for the sake
of simplicity.

The 6-dimensional integral in (24) can be reduced to
a 3-dimensional one by exploiting in tNN the conservation
of the total momentum of the two nucleons, i.e.,

〈�p ′
1 , �p

′
2 | tNN(z∗12)|�p1, �p2 〉 =

δ(3) (�p ′
1 + �p ′

2 − �p1 − �p2) 〈 �p ′
1 −�p ′

2
2 | tNN(z∗12)| �p1−�p2

2 〉 . (25)
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After some straightforward algebra one obtains

〈ψf (�p 0
1 , �p 0

2 )|�r1B , �r2B〉 = 〈φOP(�q 0
1 )|�r1B〉 〈φOP(�q 0

2 )|�r2B〉

+(2π)−3
e−i

(�p 0
1 +�p 0

2 )
2 ·(�r1B+�r2B)

∫
d3p〈�p 0

rel| tNN(p0
rel)|�p 〉

× 1
(p0

rel)
2

MN
− p2

MN
+ iε

e−i�p·(�r1B−�r2B), (26)

where the notation p ≡ |�p | for any vector �p is used, and

�p 0
rel =

�p 0
1 − �p 0

2

2
(27)

is the relative momentum of the two outgoing nucle-
ons. Due to the fact that the Coulomb force is not in-
corporated in the NN-potential, we use in the propaga-
tor of (26) an average value for the nucleon mass, i.e.
m1 = m2 ≡ MN = 938.926 MeV. Moreover, we note that
the states in the matrix element tNN(z∗12) ≡ tNN(p0

rel) of
(25) and (26) correspond only to the relative motion of the
two nucleons. In detail, the scattering amplitude in mo-
mentum space is given by the following integral equation:

〈�p ′| tNN(p0
rel)|�p 〉 = 〈�p ′|VNN|�p 〉 +

∫
d3k〈�p ′|VNN|�k 〉

× 1
(p0

rel)
2

MN
− k2

MN
+ iε

〈�k | tNN(p0
rel)|�p 〉 , (28)

which can be solved with standard numerical methods [36,
37]. Further details are given below.

We must consider at this point that also the spin and
isospin quantum numbers must be given for the outgoing
particles. This means that the final state |ψf 〉, which we
have specified till now only by

|ψf 〉 ≡ |ψf (�p 0
1 , �p 0

2 )〉 , (29)

must be extended as

|ψf 〉 ≡ |ψf (�p 0
1 , �p 0

2 ; sms, t t0;β)〉 . (30)

Here, s denotes the total spin of the two outgoing nucle-
ons, with projection ms on their relative momentum �p 0

rel
(see (27)), t the total isospin of the two nucleons, with
third component t0, and β includes the spin and isospin
quantum numbers of the residual nucleus state as well as
its excitation energy. In principle, (26) and (28) could be
exploited by using the helicity formalism, see for exam-
ple [38] for further details. However, we have chosen a
partial-wave decomposition which allows us to use exten-
sively the already existing computer codes of earlier work
(e.g., [35,39]) for the evaluation of the NN-scattering am-
plitude.

Due to the fact that our chosen reference frame Σq has
the photon momentum �q as quantization axis, one has to
perform at first an (active) rotation of the spin state:

〈sms| =
∑

a

D[s]
msa(0,−Θ,−Φ)〈sa|, (31)

where Θ and Φ denote the polar angles of �p 0
rel in Σq

and the rotation matrices can be found in [40]. Concern-
ing the optical-potential wave functions, 〈φ(�q 0

1 )|�r1B〉 and
〈φ(�q 0

2 )|�r2B〉 in (26), an uncoupled basis for the spin of the
nucleons is appropriate. It is therefore useful to rewrite
(31) as follows:

〈sms| =
∑

a,s1,s2

D[s]
msa(0,−Θ,−Φ)〈1

2s1
1
2s2|sa〉〈 1

2s1| 〈1
2s2| .

(32)
Note that the projection numbers a, s1 and s2 now refer
to the reference frame Σq, with the photon momentum
�q along the z-axis, and s1 (s2) is the spin projection of
nucleon 1 (2) in Σq. Inserting now spin and isospin degrees
of freedom into (26), we obtain

〈ψf |�r1B , �r2B〉 ≡ 〈ψf (�p 0
1 , �p 0

2 ; sms, t t0;β)|�r1B , �r2B〉 =∑
a,s1,s2

∑
t1,t2

∑
s′
1,s′

2

∑
t′1,t′2

D[s]
msa(0,−Θ,−Φ)〈1

2s1
1
2s2|sa〉

×〈1
2 t1

1
2 t2|tt0〉〈φ(�q 0

1 , s1s
′
1, t1t

′
1;β)|�r1B〉

×〈φ(�q 0
2 , s2s

′
2, t2t

′
2;β)|�r2B〉〈1

2s
′
1| 〈1

2s
′
2| 〈1

2 t
′
1| 〈1

2 t
′
2|+(2π)−3

×e−i
(�p 0

1 +�p 0
2 )

2 ·(�r1B+�r2B)

∫
d3p〈�p 0

rel, sms, t t0| TNN(p0
rel)|�p 〉

× 1
(p0

rel)
2

MN
− p2

MN
+ iε

e−i�p·(�r1B−�r2B) , (33)

where the distorted wave function 〈φ(�q 0
i , si, s

′
i, ti, t

′
i;β)|�ri3〉

with spin and isospin projection numbers si, s
′
i, ti, t

′
i is

given by (consider (10))

〈φ(�q 0
i , si, s

′
i, ti, t

′
i;β)|�ri3〉 =

〈�q 0
i , si, ti;β|

(
1 + tOP,i(z∗i )g

i
0(z

∗
i )

) |�ri3, s
′
i, t

′
i〉 . (34)

In order to exploit (33), we use the following identities:

– partial-wave decomposition of a plane wave:

ei�a·�b = 4π
∑
l,m

iljl(ab)
(
Y [l]

m (â)
)∗

Y [l]
m (b̂), (35)

where jl denote the spherical Bessel functions;
– partial-wave decomposition of 〈�p 0

rel, sms| in (33):

〈�p 0
rel, sms| = 1√

4π

∑
ljm

√
2l + 1〈l0sms|jms〉

×D[j]
msm(0,−Θ,−Φ)〈p0

rel(ls)jm| , (36)

where the projection m refers to the z-axis of Σq;
– partial-wave decomposition of a state |�p 〉

〈�p |(q(ls)jm, tt0)〉 =
1
p2

δ(p− q)

×
[
Y [l](p̂)×

[
χ[ 12 ](1) × χ[ 12 ](2)

][s]
][j]

m

|12 1
2 tt0〉 ,

(37)

where χ[ 12 ](i) denotes the Pauli spinor of the nucleon i.
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– For the matrix element of the NN-scattering ampli-
tude between partial waves, one can exploit the fact
that tNN is a rank-0 tensor operator:

〈p′(l′s′)j′m′, t′t′0|tNN(p0
rel)|p(ls)jm, tt0〉 =

δjj′δmm′δtt′δt0t′0δs′st
j s t(p′l′, pl; p0

rel) . (38)

The quantity tj s t(p′l′, pl; p0
rel) is given by a

1-dimensional integral equation which can be derived
from (28). With the help of Gaussian mesh points,
the latter can be transformed into a matrix equation
which is solved directly by matrix inversion [39].

With the help of these relations, one obtains, after
some straightforward algebra, the following final result
(�r := �r2B − �r1B):

〈ψf |�r1B , �r2B〉 ≡ 〈ψf (�p 0
1 , �p 0

2 ; sms, t t0;β)|�r1B , �r2B〉 =∑
s′
1,s′

2

∑
t′1,t′2

[ ∑
a,s1,s2

∑
t1,t2

D[s]
msa(0,−Θ,−Φ)〈1

2s1
1
2s2|sa〉

×〈1
2 t1

1
2 t2|tt0〉〈φ(�q 0

1 , s1s
′
1, t1t

′
1;β)|�r1B〉

〈φ(�q 0
2 , s2s

′
2, t2t

′
2;β)|�r2B〉+ (2π)−3

e−i
(�p 0

1 +�p 0
2 )

2 ·(�r1B+�r2B)

×
∑

l′,n1,n2

√
4πFl′,n1,n2(r, p

0
rel, sms, t)Y

[l′]
−n1

(r̂)〈 1
2s

′
1

1
2s

′
2|sn2〉

×〈1
2 t

′
1

1
2 t

′
2|tt0〉

]
〈 1
2s

′
1| 〈1

2s
′
2| 〈1

2 t
′
1| 〈1

2 t
′
2| , (39)

where the function F in (39) is given by

Fl′,n1,n2(r, p
0
rel, sms, t) =

∑
l,j

∫
dpp2il

′
jl′(pr)(−1)n1

× 1
(p0

rel)
2

MN
− p2

MN
+ iε

√
2l + 1〈l0sms|jms〉

×D
[j]
msn1+n2

(0,−Θ,−Φ)tj s t0(p0
rell, pl

′; p0
rel)

×〈l′n1sn2|jn1 + n2〉 . (40)

In our explicit evaluation, we have taken an upper
limit of l′ = 3, i.e., we have considered the isospin-1
partial waves 1S0,

3P0,
3P1,

3P2,
1D2,

3F2,
3F3, and 3F4 for

pp-knockout and in addition the isospin-0 contributions
3S1,

1P1,
3D1,

3D2,
3D3, and 1F3 for pn-knockout. Con-

cerning the summation index l in (40), the limit l′ ≤ 3
implies that in addition also l = 4 and l = 5 contribu-
tions (3G3 and 3H4) are considered. It has been checked
numerically that this truncation is sufficient at least for
the kinematics considered in this paper.

4 Results

In this section, we discuss the role of NN-FSI on different
electromagnetic reactions with pp- and pn-knockout from
16O. The case of the 16O(e, e′pp)14C reaction has already
been considered in [22], where it has been found that the

Fig. 3. The differential cross-section of the 16O(e, e′pp) re-
action to the 0+ ground state of 14C (upper panel) and of
the 16O(e, e′pn) reaction to the 1+ ground state of 14N (lower
panel) in a superparallel kinematics with an incident elec-
tron energy E0 = 855 MeV, an electron scattering angle
θe = 18◦, energy transfer ω = 215 MeV and q = 316 MeV/c.
In 16O(e, e′pn) the proton is ejected parallel and the neutron
antiparallel to �q. Different values of pB are obtained changing
the kinetic energies of the outgoing nucleons. Positive (nega-
tive) values of pB refer to situations where �pB is parallel (an-
tiparallel) to �q. Line convention: PW (dotted line), PW-NN
(dash-dotted line), DW (dashed line), DW-NN (solid line).

effects of NN-FSI depend on kinematics, on the differ-
ent partial waves for the relative motion of the nucleon
pair in the initial state and, therefore, on the final state of
the residual nucleus. In particular, a considerable enhance-
ment for medium and large values of the recoil momentum
has been found, for the transition to the 0+ ground state
of 14C, just in the superparallel kinematics of a recent
experiment at MAMI [16]. Since similar kinematics has
been proposed for the first 16O(e, e′pn)14N experiment at
MAMI [19], this is the first case we have considered in the
present investigation.

The calculated differential cross-sections of the
16O(e, e′pp) reaction to the 0+ ground state of 14C and
of the 16O(e, e′pn) reaction to the 1+ ground state of 14N



240 The European Physical Journal A

Fig. 4. The differential cross-section of the 16O(e, e′pp) reac-
tion to the 0+ ground state of 14C in the same superparallel
kinematics as in fig. 3. Line convention: DW with the ∆-current
(dotted line), DW-NN with the ∆-current (dash-dotted line),
DW with the one-body current (dashed line), DW-NN with
the one-body current (solid line).

in superparallel kinematics are displayed in the upper and
lower panels of fig. 3, respectively. The results given by
the different approximations (20)-(23) are compared in the
figure. The 16O(e, e′pp)14C cross-section was already pre-
sented in [22] and is shown again here only to allow a more
direct comparison of FSI effects on pp- and pn-emission in
the same kinematics.

It can be clearly seen in the figure that the inclusion of
the optical potential leads, in both reactions, to an overall
and substantial reduction of the calculated cross-sections
(see the difference between the PW and DW results),
which, e.g. at pB = 100 MeV/c, corresponds to a factor
of ∼ 0.2 in (e, e′pp) and of ∼ 0.3 in (e, e′pn). This effect is
well known and is mainly due to the imaginary part of the
optical potential, that accounts for the flux lost to inelastic
channels in the nucleon–residual-nucleus elastic scatter-
ing. The optical potential gives the dominant contribution
of FSI for recoil momentum values up to pB � 150 MeV/c.
At larger values, NN-FSI gives an enhancement of the
cross-section, that increases with pB . In (e, e′pp) this en-
hancement goes beyond the PW result and amounts to
roughly an order of magnitude for pB � 300 MeV/c. In
(e, e′pn) this effect is still sizeable but much weaker (i.e.
only 50% of enhancement at pB = 300 MeV/c). We note
that in both cases the contribution of NN-FSI is larger in
the DW-NN than in the PW-NN approximation.

In order to understand NN-FSI effects in some more
detail, the separated contributions of the different terms
of the nuclear current in the DW and DW-NN approxi-
mations are compared in fig. 4 for pp- and in fig. 5 for
pn-knockout, respectively. In (e, e′pp) NN-FSI produces a
strong enhancement of the ∆-current contribution for all
the values of pB . This enhancement amounts to be roughly
a factor of 2 at intermediate values of pB and becomes even
stronger for smaller/larger recoil momenta, e.g. more than

Fig. 5. The differential cross-section of the 16O(e, e′pn) reac-
tion to the 1+ ground state of 14N in the same superparallel
kinematics as in fig. 3. Line convention in the upper panel: DW
with the ∆-current (dotted line), DW-NN with the ∆-current
(dash-dotted line), DW with the one-body-part (dashed line),
DW-NN with the one-body-part (solid line). Line convention
in the lower panel: DW with the pion-in-flight current (dot-
ted line), DW-NN with the pion-in-flight current (dash-dotted
line), DW with the seagull-current (dashed line), DW-NN with
the seagull current (solid line).

an order of magnitude at pB = −100 MeV/c. Up to about
100–150 MeV/c, however, this effect is completely over-
whelmed by the dominant contribution of the one-body
current, while for larger values of pB , where the one-body
current is less important in the cross-section, the increase
of the ∆-current is responsible for the substantial enhance-
ment in the final result of fig. 4. The effect of NN-FSI on
the one-body current is anyhow sizeable (a factor of about
2 at pB = 100 MeV/c), and it is responsible for the NN-
FSI effect at lower and intermediate values of pB in fig. 4.

Different effects of NN-FSI on the various components
of the current are shown for the (e, e′pn) reaction in fig. 5.
Also in this case, NN-FSI affects more the two-body
than the one-body current. A sizeable enhancement is
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Fig. 6. The differential cross-section of the 16O(γ, pp) reaction
to the 0+ ground state of 14C in superparallel kinematics at
Eγ = 215 MeV. Line convention as in fig. 3.

produced on the ∆-current, at all the values of pB , and a
huge enhancement, up to about two orders of magnitude,
on the seagull current at large momenta. In contrast,
the one-body current is practically unaffected by NN-FSI
up to about 150 MeV/c. A moderate enhancement up
to ∼ 50% is found at larger momenta, where, however,
the one-body current gives only a negligible contribution
to the final cross-section. The role of the pion-in-flight
term, in both DW and DW-NN approaches, is practically
negligible in the cross-section. Thus, a large effect is
given by NN-FSI on the seagull and the ∆-current. The
sum of the two terms, however, produces a destructive
interference that leads to a partial cancellation in the
final cross-section. The net effect of NN-FSI in fig. 3 for
pn-emission is therefore considerably reduced compared
to the (e, e′pp) reaction, but anyhow non-negligible.
Moreover, the results for the partial contributions in
fig. 5 indicate that in pn-knockout NN-FSI can be large
in particular situations and therefore should in general
be included in a careful evaluation.

The cross-section of the 16O(γ, pp) reaction to the 0+

ground state of 14C calculated with the different approxi-
mations for FSI is shown in fig. 6. The separated contribu-
tions of the one-body and ∆-currents in DW and DW-NN
are displayed in fig. 7. Calculations have been performed
in superparallel kinematics, and for an incident photon
energy which has the same value, Eγ = 215 MeV, as the
energy transfer in the (e, e′pp) calculation of fig. 3. This
kinematics, which is not very well suited for (γ, pp) ex-
periments, can be interesting for a theoretical comparison
with the corresponding results of the electroinduced reac-
tions in figs. 3 and 4.

In general, two-body currents give the major contri-
bution to (γ, NN) reactions. In this superparallel kine-
matics, however, the (γ, pp) cross-section is dominated by
the one-body current for recoil momentum values up to
about 150 MeV/c. For larger values the ∆-current plays

Fig. 7. The differential cross-section of the 16O(γ, pp) reaction
to the 0+ ground state of 14C in the same kinematics as in fig. 6.
Line convention as in fig. 4.

the main role. This is the same behavior as in the corre-
sponding situation for (e, e′pp). Similar to (e, e′pp), NN-
FSI produces an enhancement of the ∆-current contribu-
tion, see fig. 7, whose absolute size strongly depends on pB .
Whereas for pB = 50 MeV/c, the effect is only ∼ 70%, one
obtains more than an order of magnitude enhancement at
pB = −100 MeV/c. The role of NN-FSI on the one-body
current is almost completely negligible in (γ, pp), while
it is significant in (e, e′pp), as has been discussed above.
This effect is produced in (e, e′pp) on the longitudinal part
of the nuclear current, that does not contribute in reac-
tions induced by a real photon. Thus, in practice, in this
kinematics NN-FSI affects only the ∆-current and there-
fore in fig. 6 its effect is negligible in the region where
the one-body current is dominant. At large values of pB ,
where the role of the ∆-current becomes important, the
enhancement produced by NN-FSI is large, i.e. a factor
of ∼ 4 at pB = 300 MeV/c, but nevertheless weaker than
in the same superparallel kinematics for (e, e′pp). We note
that also for the (γ, pp) reaction in fig. 6 NN-FSI effects
are larger in the DW-NN than in the PW-NN approach.

Another example is presented in fig. 8, where the re-
sults of the different approximations in the treatment of
FSI are displayed for the 16O(γ, pp) reaction to the 0+

ground state of 14C (upper panel) and for the 16O(γ, pn)
reaction to the 1+ ground state of 14N (lower panel) in a
coplanar kinematics at Eγ = 120 MeV, where the energy
and the scattering angle of the outgoing proton are fixed
at T1 = 45 MeV and γ1 = 45◦, respectively. Different val-
ues of the recoil momentum can be obtained by varying
the scattering angle γ2 of the second outgoing nucleon on
the other side of the photon momentum. It can be clearly
seen in the figure that NN-FSI has almost no effect. In
contrast, a very large contribution is given, for both reac-
tions, by the optical potential, which produces a substan-
tial reduction of the calculated cross-sections correspond-
ing to a factor ∼ 0.3 at γ2 = 100◦. This kinematics, which
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Fig. 8. The differential cross-section of the 16O(γ, pp) reac-
tion to the 0+ ground state of 14C (upper panel) and of the
16O(γ, pn) reaction to the 1+ ground state of 14N (lower panel)
as a function of the scattering angle γ2 of the second outgoing
nucleon in a coplanar kinematics with Eγ = 120 MeV, T1 = 45
MeV and γ1 = 45◦. Line convention as in fig. 3.

appears within reach of available experimental facilities,
was already envisaged in [9] as promising to study SRC
in the (γ, pp) reaction. In fact, at the considered value
of the photon energy, the contribution of the ∆-current
is relatively much less important, and while the (γ, pn)
cross-section is dominated by the seagull current [9], in
the (γ, pp) cross-section the contribution of the one-body
current is large and competitive with the one of the two-
body current. This can be seen in fig. 9, where the two
separated contributions are shown in the DW and in the
DW-NN approximations. Both processes are important:
the ∆-current plays the main role at lower values of γ2,
while for γ2 ≥ 110◦ the one-body current and therefore
SRC give the major contribution. The effect of NN-FSI
is practically negligible on both terms, which explains the
result in the final cross-section of fig. 8.

Fig. 9. The differential cross-section of the 16O(γ, pp) reaction
to the 0+ ground state of 14C in the same kinematics as in fig. 8.
Line convention as in fig. 4.

A study of the (γ, pp) reaction in a kinematics of the
type considered in figs. 8 and 9, where NN-FSI is neg-
ligible and correlations are important, might represent a
promising alternative to the (e, e′pp) reaction for the in-
vestigation of SRC.

5 Summary and outlook

The relevance of the mutual final-state interaction of the
two emitted nucleons (NN-FSI) in electro- and photoin-
duced two-nucleon knockout from 16O has been investi-
gated within a perturbative treatment.

A consistent evaluation of FSI would require a three-
body approach, for the two nucleons and the residual nu-
cleus, by summing up an infinite series of contributions in
the NN-scattering amplitude and in the interaction of the
two nucleons with the residual nucleus. In all previous cal-
culations performed till now on complex nuclei, apart from
our recent paper [22], NN-FSI was neglected and only the
interaction of each of the two nucleons with the residual
nucleus was included. In our model this effect is accounted
for by a phenomenological optical potential. Following the
same approach as in [22], here NN-FSI has been incorpo-
rated in the model within a perturbative treatment of the
optical potential and of the NN-interaction up to first or-
der in the corresponding scattering amplitudes. Therefore,
both effects of FSI, due to NN-FSI and to the optical po-
tential, are taken into account in the present treatment,
but the multiscattering processes, where the two effects
are intertwined, are neglected. In spite of that, the most
important part of both contributions is presumably in-
cluded in the present treatment. Such an approximated
but more feasible approach should therefore be able to
give a reliable idea of the relevance of NN-FSI.
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The full three-body approach, which represents a com-
putationally challenging task, will anyhow be tackled in
forthcoming studies, in order to give a more definite an-
swer about the role of NN-FSI, especially in those situa-
tions where the effect turns out to be large in the present
treatment.

Numerical results of cross-sections calculated for dif-
ferent reactions and kinematics have been presented. In
order to understand in more detail the role of the various
effects of FSI, the results of the perturbative treatment,
where both the optical potential and the NN-interaction
are included, have been compared with the more approx-
imated approaches where only either contribution is con-
sidered, as well as with the simplest calculations where
FSI is completely neglected and the PW approximation is
assumed for the outgoing nucleons.

In general, the optical potential gives an overall and
substantial reduction of the calculated cross-sections. This
important effect represents the main contribution of FSI
and can never be neglected. In most of the situations con-
sidered here, NN-FSI gives an enhancement of the cross-
section. The effect is in general non-negligible, it depends
strongly on the kinematics, on the type of reaction, and,
as is shown in [22], on the final state of the residual nu-
cleus. NN-FSI affects in a different way the various terms
of the nuclear current, usually more the two-body than the
one-body terms, and is sensitive to the various theoretical
ingredients of the calculation. This makes it difficult to
make predictions about the role of NN-FSI in a particu-
lar situation. In general each specific situation should be
individually investigated.

The results obtained in the present investigation indi-
cate that NN-FSI effects are in general larger in pp- than
in pn-knockout and in electro- than in photoinduced reac-
tions. In particular situations they can be negligible, e.g.,
in the 16O(γ, pp)14C and 16O(γ, pn)14N reactions for the
coplanar kinematics at Eγ = 120 MeV considered here.
In particular situations they can be large, e.g. in the su-
perparallel kinematics of the 16O(e, e′pp)14Cg.s. reaction,
where NN-FSI leads to a strong enhancement of the cross-
section, up to about one order of magnitude at large val-
ues of the recoil momentum. A qualitatively similar but
quantitatively much weaker effect is obtained, in the same
kinematics, for the 16O(e, e′pn)14N and 16O(γ, pp)14C re-
actions.

In general, NN-FSI is non-negligible. In spite of that,
the original guess, that justified its neglect in the past,
i.e. that its contribution does not significantly change the
main qualitative features of the theoretical results, is ba-
sically correct. But if we want to obtain more reliable
quantitative results and to get more insight into the two-
nucleon knockout process, for a more careful comparison
with available as well as future data, NN-FSI must be in-
cluded in the model.

In order to improve the reliability of the theoretical
description of the two-nucleon knockout process, the full
three-body problem of the final state has to be tackled in
forthcoming studies. In that context, special emphasis has

to be devoted to a more consistent treatment of the initial
and the final state.
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1. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243
(2000).

2. K. Gottfried, Nucl. Phys. 5, 557 (1958); Ann. Phys. (N.Y.)
21, 29 (1963); W. Czyz, K. Gottfried, Ann. Phys. (N.Y.)
21, 47 (1963).

3. S. Boffi, C. Giusti, F.D. Pacati, M. Radici, Electromag-
netic Response of Atomic Nuclei, Oxford Studies in Nu-
clear Physics (Clarendon Press, Oxford, 1996).

4. C. Giusti, F.D. Pacati, Nucl. Phys. A 641, 297 (1998).
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